Reactions with hydrazonoyl halides $6 \mathbf{0}^{1}$: synthesis of thieno[2',3':4,5] pyrimidino[1,2-b][1,2,4,5]tetrazines, [1]benzothieno[2',3' :4,5]pyrimidino [1,2-b][1,2,4,5]tetrazines, pyrazolo[3',4':4,5]pyrimidino[1,2-b] [1,2,4,5]tetrazines and pyrazolo[3,4- d]pyridazines

Abdou O. Abdelhamid ${ }^{\text {a*, Zeineb H. Ismail }}$ b and Anhar Abdel-Aziem ${ }^{\text {b }}$
${ }^{\text {a Department }}$ of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
${ }^{\text {b Department of Chemistry, Faculty of Science (Girls Branch), Al-Azhar University, Cairo, Egypt }}$

Abstract

Thieno[$\left.2^{\prime}, 3^{\prime}: 4,5\right]$ pyrimidino[1,2-b][1,2,4,5]tetrazine,[1]benzothieno-[2', $\left.3^{\prime}: 4,5\right]$ pyrimidino[1,2-b][1,2,4,5]tetrazine,pyrazolo [$\left.3^{\prime}, 4^{\prime}: 4,5\right]$ pyrimidino[1,2-b][1,2,4,5]tetrazine, triazolo[4,3-a]pyrimidin-5(1H)-one, 1-\{[2-(1-benzofuran-2-yl)-5-phenyl-4,5-dihydro-1 H-pyrazol-1-yl]-4-substituted-1,3-thiazol-5-yl\}-2-phenyldiazene, 3-acyl-4-(1-benzofuran-2-ylcarbonyl) pyrazole and pyrazolo[3,4-d] pyridazine derivatives could be obtained via reactions of hydrazonoyl halides with the appropriate pyrimidine-2-thione, 3-amino-5,6-dimethyl-2-sulfanylthieno[2,3- d] pyrimidin-4(3H)-one, 5-amino-6-mercapto-1-phenyl-1,5-dihydropyrazolo[3,4-d] pyrimidin-4-one and 1-(benzofuran-2-yl)-3-(dimethylamino)prop-2-en1 -one. Structures of the products have been determined by elemental analyses, spectral data studies and alternative synthesis whenever possible.

Keywords: tetrazino[2,3-a]thieno[2,3- d]pyrimidine, triazolo[4,3- a]pyrimidine, pyrazolo[3,4- d]pyrimidines, pyrimidine-2-thione, hydrazonoyl halides

Hydrazonoyl halides have been widely used for the synthesis of heterocyclic compounds. ${ }^{2-7}$ A large number of thiazole derivatives have been found to exhibit pharmacological activity. ${ }^{8,9}$ They are used also as an anthelmintic, ${ }^{10}$ fungicidal, ${ }^{11}$ antifungal activity, inhibiting in vivo the growth of Xanthomonas oryzae, ${ }^{12}$ and ingredient of herbicides. ${ }^{13}$ Pyrimidotetrazines have been reported to exhibit a range of biological activities. ${ }^{14,15}$ Also, triazolopyrimidines have been reported to exhibit in vivo leishmanicidal activity against the amastigate stage of leishmania donovani ${ }^{16,17}$ and cardiovascular activity. ${ }^{18,19}$ They are cardiotonics; coronary vasodilators and they have antihypertensive properties. ${ }^{20}$ They act against Aspergillus and Pencicillium species ${ }^{21}$ and have been tested as microbicidal and bioregulator agents. ${ }^{22}$ We report here the synthesis of some new thieno $[2 ', 3$ ':4,5]pyrimidino $[1,2-b][1,2,4,5]$ tetrazine,
[1]benzothieno-[2',3':4,5]pyrimidino[1,2-b][1,2,4,5]tetrazine, pyrazolo[3 ', $\left.4^{\prime}: 4,5\right]$-pyrimidino $[1,2-b][1,2,4,5]$ tetrazine, triazolo[4,3-a]pyrimidin-5(1H)-one, 1-\{[2-(1-benzofuran-2-yl)-5-phenyl-4,5-dihydro-1 H -pyrazol-1-yl]-4-substituted-1,3-thiazol-5-yl\}-2-phenyldiazene, and pyrazolo[3,4- d]pyridazine.

Results and discussion

Reaction of the appropriate hydrazonoyl halides 1a-e with 3-amino-5,6-dimethyl-2-sulfanylthieno[2,3- d]pyrimidin$4(3 \mathrm{H})$-one ${ }^{23}$ (2a) in chloroform containing triethylamine under reflux afforded, in each case, one isolable product as evidenced by TLC. The isolated products were formulated as $6 H$-thieno $\left[2^{\prime}, 33^{\prime}: 4,5\right]$ pyrimidino $[1,2-b][1,2,4,5]$ tetrazines $\mathbf{6 a - e}$ (Scheme 1) by elemental analyses and spectral data.

Scheme 1

[^0]The formation of ethyl 7,8-dimethyl-6-oxo-1-phenyl-1,4-dihydro- $6 H$-thieno[$2^{\prime}, 3^{\prime}: 4,5$]pyrimidino[1, 2-b] [1,2,4,5]tetrazine-3-carboxylate (6a) from the hydrazonoyl chloride 1a and thione 2a could be accounted for the pathways depicted in Scheme 1.

Analogously, 2-(benzofuran-2-yl- N-phenyl-2-oxoacetohydrazonoyl bromide (1e) reacted with each of 3-amino-2-sulfanyl-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin$4(3 \mathrm{H})$-one $^{24} \quad \mathbf{(9 a)}$ and 5-amino-6-mercapto-1-phenyl-1,5-dihydropyrazolo[3,4- d]pyrimidin-4-one ${ }^{25}$ (10a) in boiling chloroform containing triethylamine to afford 3-(1-benzofuran-2-ylcarbonyl)-1-phenyl-7,8,9,10-tetrahydro-6 H -[1]benzo-thieno[2',3':4,5]pyrimidino[1,2-b][1,2,4,5]tetrazin-6-one (11) and 3-(1-benzofuran-2-ylcarbonyl)-1,9-diphenyl-1,4-dihydro-6H-pyrazolo[3'4':4,5]-pyrimidino[1,2-b][1,2,4,5]tetrazin-6one (12) (Scheme 2).

Also, treatment of the appropriate 1a-e with the pyrimidine-2-thione ${ }^{23}$ 13a in boiling chloroform gave thieno[2,3-d]
[1,2,4]triazolo[4,3-a]pyrimidin-5(1H)-one derivatives 17a-e, respectively (Scheme 3). Structure of 17 was elucidated on the basis of elemental analysis, spectral data and alternative synthesis route. Thus, ${ }^{1} \mathrm{H}$ NMR spectrum of 3-(1-benzofuran-2-ylcarbonyl)-6,7-dimethyl-1-phenylthieno[2,3$d][1,2,4]$ triazolo[4,3-a]pyrimidin-5(1H)-one (17a) showed signals at $\delta=1.40(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~s}$, $3 \mathrm{H}), 4.58(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 7.13-7.55(\mathrm{~m}, 3 \mathrm{H})$, $8.16(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$. Its IR spectrum revealed bands at 1744 (CO ester), $1620(\mathrm{C}=\mathrm{N}), 1600(\mathrm{C}=\mathrm{C})$. Also, compound $\mathbf{1 7 a}$ was obtained from the reaction of $\mathbf{1 3 b}$ with $\mathbf{1 a}$ in boiling sodium ethoxide solution. The mechanism outlined in Scheme 3 seems to be the most plausible pathway for the formation of $\mathbf{1 7}$ from the reaction of $\mathbf{1}$ with the appropriate 13a or $\mathbf{1 3 b}$.
Two possible pathways can account for the formation of 17:1)- 1,3-addition of the thiol tautomer 13a to the nitrilium imide, generated in situ from hydrazonoyl halides and triethylamine, to give the thiohydrazonate ester 14 which

$\mathrm{R}=$ Benzfuran $-2-\mathrm{yl}$
a, $\mathrm{R}^{\prime}=\mathrm{H}$
b, $\mathrm{R}^{\prime}=\mathrm{CH}_{3}$

RCOC(Br):NNHPh

Scheme 2

Scheme 3
undergo nucleophilic cyclisation to yield spiro compounds 15 That ring were opened to 16 which cyclised to yield 17 by loss hydrogen sulfide; and 2)- 1,3-cycloaddition of nitrilium imide to $\mathrm{C}=\mathrm{S}$ double bond of $\mathbf{1 3}$ a can give directly $\mathbf{1 5}$ (Scheme 3). All attempts to isolate any intermediates were unsuccessful.

Treatment of 1-benzo[d]furan-2-yl-3-phenylprop-2-en-1one $^{26}(\mathbf{2 0})$ with thiosemicarbazide (21) in boiling acetic acid gave 3-(1-benzofuran-2-ylcarbonyl)-5-phenyl-4,5-dihydro$1 H$-pyrazol-1-carbothioamide (22). Compound 22 reacted with the appropriate hydrazonoyl halides $\mathbf{1 b}, \mathbf{1 d}$ and $\mathbf{1 e}$ in chloroform (or ethanol) containing triethylamine to afford $1-\{[2-$ (1-benzofuran-2-yl)-5-phenyl-4,5-dihydro-1 H -pyrazol-1-yl]-4-methyl-1,3-thiazol-5-yl\}-2-phenyldiazene (23a), 1-\{[2-1-(benzofuran-2-yl-5-phenyl-4,5-dihydro-1 H -pyrazol-1-yl]-4-phenyl-1,3-thiazol-5-yl)\}-2-phenyldiazine (23b) and 1-\{[2-1-(benzofuran-2-yl-5-phenyl-4,5-dihydro-1 H -pyrazol-1-yl]-4-(benzofuran-2-yl)-1,3-thiazol-5-yl)\}-2-phenyldiazine (23c), respectively (Scheme 4).

Structure 23 was confirmed by elemental analysis, spectral data and alternative synthesis. Thus, benzenediazonium chloride reacted with 2-[3-(1-benzofuran-2-yl)-5-phenyl-4,5-dihydro-1 H -pyrazol-1-yl]-4-phenyl-1,3-thiazole (24b), which prepared via reaction of 22 with ω-bromoacetophenone, in pyridine to give product identical in all aspects (m.p., mixed m.p. and spectra) with 23b.

Also, 1-aza-2-[(benzofuran-2-yl)prop-1-enyl][4-phenyl-5-(phenyldiazenyl)]-1,3-thiazol-2-amine (27b) reacted with benzaldehyde in sodium hydroxide solution (10%) to give a product identical in all aspects (m.p., mixed m.p. and spectra) with 23b (Scheme 4).
Treatment of C-ethoxycarbonyl- N-phenylhydrazonoyl chloride 1a with 1-(benzofuran-2-yl)-3-(dimethylamino)prop2 -en-1-one ${ }^{27}$ (28) in refluxing toluene containing triethylamine yielded ethyl 1-phenyl-4-(benzofuran-2-ylcarbonyl)pyrazole-3-carboxylate (31a) (Scheme 5). Structure 31a was inferred from its spectral, elemental analysis and chemical

Scheme 4

Scheme 5
transformation. Thus, ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 1 a}$ showed signals at $\delta=1.3\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \underline{\mathrm{CH}}_{3}\right), 4.21\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 7.44-7.88 (m, 10H, ArH's) and 8.24 (s, 1H, pyrazole H-5).

Compound 31a was converted to 7-(1-benzofuran-2-ylcarbonyl)-2-phenyl-2 H -pyrazolo[3,4- d]pyridazin-4-ol (33a) by its treatment with hydrazine hydrate in boiling ethanol. Structure 33 was elucidated on the basis of elemental analysis, spectral data and alternative synthesis route. ${ }^{1} \mathrm{H}$ NMR spectrum of 33a showed signals at $\delta=7.33-7.62$ (m , $10 \mathrm{H}, \mathrm{ArH}$'s), 8.23 (s, 1H, pyrazole H-5) and 11.12 (s, br., 1 H , NH). Analogously, 4-benzofuran-2-yl-1-phenyl-3-(phenylcarbamoyl)pyrazole (31b) reacted with hydrazine hydrate in boiling ethanol to give an identical product in all aspects (m.p., mixed m.p., and spectra) with 33a. Formation of 31 can be explained via reaction of nitrile imide, which formed in situ from hydrazonoyl halides $\mathbf{1}$ and triethylamine, with 28 to afford the intermediate cyclo adduct 29 or $\mathbf{3 0}$ followed by elimination of diethylamine to give the pyrazole $\mathbf{3 1}$ or $\mathbf{3 2}$ as the final isolated product. Structure 32 was ruled out on the basis of the formation of pyrazolo[3,4- d]pyridazine 33 . Similarly, the appropriate hydrazonoyl halides $\mathbf{1 b}-\mathbf{e}$ reacted with 28 to afford corresponding pyrazoles $\mathbf{3 1 b}-\mathbf{e}$, respectively. Pyrazolo[3,4-d]pyridazines 33a-d were obtained in good yield from the reaction of the appropriate pyrazoles 31b-e with hydrazine in boiling ethanol. Structures 33b,c were elucidated on the basis of elemental analysis and spectral data (experimental part).
Treatment of hydrazonoyl bromide 1e with the appropriate ethyl ethyl 4-aryl-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidin-5-carboxylate ${ }^{28,29}$ 34a-d in boiling chloroform under reflux gave the triazolo[4,3-a]pyrimidines 38a-d, respectively (Scheme 6). The structure of $\mathbf{3 8}$ was elucidated on the basis elemental analysis, spectral data and alternative synthesis route. Thus, ${ }^{1} \mathrm{H}$ NMR spectrum of 38a showed signals at $\delta=1.23(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}), 2.56(\mathrm{~s}, 3 \mathrm{H})$, $4.09(\mathrm{q}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 5.65(\mathrm{~s}, 1 \mathrm{H}), 7.16-8.24(\mathrm{~m}, 15 \mathrm{H}$,
aromatic protons). Its IR spectrum revealed bands at 1702 (CO ester), 1650 (CO conjugated) and $1615(\mathrm{C}=\mathrm{N})$. Thus, hydrazonoyl bromide 1 e reacted with ethyl 6-methyl-4-phenyl-2-methylsulfanyl-1,6-dihydropyrimidine-5-carboxylate ${ }^{28}$ (39a) in boiling sodium methoxide to give product identical in all aspects (m.p., mixed m.p., and spectra) with 38a.

Two possible pathways can account for the formation 38: (1) 1,3-addition of the thiol, tautomer 34 to the nitrilium imide, which generated in situ by treatment of hydrazonoyl bromide $\mathbf{1 e}$ with triethylamine, can give the thiohydrazonate ester $\mathbf{3 5}$ which undergo nucleophilic cyclisation to yield spiro compounds $\mathbf{3 6}$. The latter intermediate $\mathbf{3 6}$ were ring opened to 37 which were cyclised to yield $\mathbf{3 8}$ by loss hydrogen sulfide; and (2) 1,3-cycloaddition of nitrilium imide to $\mathrm{C}=\mathrm{S}$ double bond of $\mathbf{3 4}$ to give directly $\mathbf{3 6}$ (Scheme 6).

Experimental

All melting points were determined on an electrothermal apparatus and are uncorrected. IR spectra were recorded (KBr discs) on a Shimadzu FT-IR 8201 PC spectrophotometer. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3} and $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ solutions on a Varian Gemini 300 MHz spectrometer and chemical shifts are expressed in δ units using TMS as an internal reference. Mass spectra was recorded in on a GC-MS QP 1000 EX Schimadzu. Elemental analyses and microorganism tests were carried out at the Microanalytical Centre of the Cairo University. Hydrazonoyl halides ${ }^{30-34}$ 1a-e were obtained as previously reported.

Synthesis of 6a-d, 11, 12, 17a-e and 38a-d
Method A : A mixture of the appropriate 2a, 9a, 10a, 13a or 34a-d (5 mmoles), the appropriate hydrazonoyl halides 1a-e (5 mmoles) and triethylamine ($1.5 \mathrm{ml}, 5 \mathrm{mmoles}$) in boiling chloroform (20 ml) under reflux for 10 hrs . Chloroform was evaporated under reduce pressure and the resulting solid was triturated with petroleum ether $40-60^{\circ} \mathrm{C}$. The resulting solid was collected and recrystallised from the proper solvent to give $\mathbf{6 a - e}, \mathbf{1 1}, \mathbf{1 2}, \mathbf{1 7 a} \mathbf{- e}$ and $\mathbf{3 8 a}-\mathbf{d}$, respectively (Tables 1 and 2).

Scheme 6

Table 1 Characterisation data of the newly synthesised compounds

Compd no.	Mp. $/{ }^{\circ} \mathrm{C}$ Solvent	Yielda/\% Colour	Mol. formula Mol. wt.	\% Analyses, Calcd./Found			
				C	H	N	S
6a	120-121	$90 \text { (85) }$	$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{~S}$	56.39	4.47	18.27	8.36
	EtOH	Yellow	383.42	56.21	4.27	18.00	8.53
6b	360	90 (85)	$\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}$	57.78	4.28	19.82	9.07
	EtOH	Yellow	353.40	57.87	4.15	19.70	8.92
6c	298-300	90 (85)	$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}$	61.38	4.21	19.52	7.45
	EtOH	Yellow	430.48	61.54	4.13	19.41	7.32
6d	180-182	90 (85)	$\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}$	63.60	4.12	16.86	7.72
	EtOH	Red	415.47	63.42	4.00	16.62	7.52
6 e	260-261	90 (85)	$\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{~S}$	63.29	3.76	15.38	7.04
	EtOH	Red	455.50	63.35	3.67	15.45	6.89
11	200-202	90 (85)	$\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{~S}$	64.85	3.98	14.54	6.66
	EtOH	Red	481.54	64.65	3.91	14.22	6.87
12	300-301	$85 \text { (80) }$	$\mathrm{C}_{27} \mathrm{H}_{17} \mathrm{~N}_{7} \mathrm{O}_{3}$	66.53	3.52	20.11	-
	EtOH	Red	487.48	66.35	3.35	19.85	
17a	130-131	90 (80)	$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$	58.68	4.38	15.21	8.70
	EtOH	Yellow	368.41	58.86	4.23	14.98	8.62
17b		90 (80)	$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$	60.34	4.17	16.56	9.47
	EtOH	Yellow	338.39	60.43	4.10	16.65	9.52
17c	260	90 (80)	$\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}$	63.60	4.12	16.86	7.72
	EtOH	Yellow	415.47	63.50	4.32	16.57	7.65
17d	270	90 (80)	$\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$	65.98	4.03	13.99	8.01
	EtOH	Red	400.46	66.10	4.20	14.15	8.18
17e	230-231	85 (70)	$\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$	65.44	3.66	12.72	7.28
	EtOH	Red	440.48	65.33	3.57	12.58	7.32
22	240-241	70	$\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{OS}$	67.27	4.70	13.07	9.98
	AcOH	Colourless	321.40	67.15	4.50	12.86	9.89
23a	160-162	80 (75)	$\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{OS}$	69.96	4.57	15.12	6.92
	EtOH	Red	463.56	70.11	4.67	15.18	7.12
23b	220	90 (75)	$\mathrm{C}_{32} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{OS}$	73.12	4.41	13.33	6.10
	EtOH	Red	525.31	73.00	4.52	13.54	6.35
23c	170	85 (75)	$\mathrm{C}_{34} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}$	72.31	4.10	12.38	5.68
	EtOH	Red	565.64	72.11	4.12	12.30	5.86
24a		80	$\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{OS}$	70.17	4.77	11.69	8.92
	EtOH	Yellow	359.32	70.25	4.68	11.75	9.12
24b	230-232	75	$\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{OS}$	74.09	4.54	9.97	7.61
	EtOH	Yellow	421.52	74.25	4.35	10.12	7.85
26a	189-190	72	$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{OS}$	61.97	4.83	15.49	11.82
	EtOH	Pale yellow	271.34	62.15	4.92	15.34	12.00
26b	270	75	$\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{OS}$	68.44	4.53	12.60	9.61
	EtOH	Yellow	333.41	68.58	4.35	12.75	9.85
27a	159-160	70 (65)	$\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{OS}$	63.98	4.56	18.65	8.53
	EtOH	Red	375.45	63.70	4.65	18.36	8.34
27b	149-150	90 (80)	$\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{OS}$	68.63	4.37	16.00	7.33
	EtOH	Red	437.52	68.42	4.52	15.89	7.21
27c	180-181	80 (70)	$\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}$	67.91	4.01	14.67	6.71
	EtOH	Red	477.55	67.75	3.98	14.76	6.56
31a	100	80	$\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$	69.99	4.48	7.77	-
	EtOH	Yellow	360.36	70.12	4.52	7.94	
31b	75	75	$\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$	73.70	4.21	10.31	-
	EtOH	Yellow	407.43	73.56	4.32	10.23	
31c	160	80	$\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$	72.72	4.27	8.48	-
	EtOH	Yellow	330.34	72.65	4.40	8.62	
31d	60	75	$\mathrm{C}_{25} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$	76.52	4.11	7.14	-
	EtOH	Brown	392.41	76.65	4.23	7.24	
31e	70	70	$\mathrm{C}_{27} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$	74.99	3.73	6.48	-
	EtOH	Brown	432.43	75.12	3.94	6.75	
33a	259-260	80	$\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2}$	69.51	3.68	17.06	-
	AcOH	White	328.33	69.35	3.86	16.85	
33b	210-212	80	$\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}$	73.61	4.32	17.17	-
	EtOH	White	326.36	73.85	4.12	17.28	
33c	158-160	80	$\mathrm{C}_{25} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}$	77.30	4.15	14.42	-
	EtOH	Orange	388.43	77.15	4.00	14.52	
33d	200-202	80	$\mathrm{C}_{27} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}$	75.68	3.78	13.08	-
	EtOH	Yellow	428.18	75.86	3.87	12.82	
38a	200	95 (85)	$\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{4}$	71.42	4.79	11.10	-
	EtOH	Red	504.55	71.56	4.97	11.00	
38b	215-216	95 (85)	$\mathrm{C}_{33} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{4}$	72.51	5.53	10.25	
	EtOH	Red	546.63	72.70	5.30	10.00	
38c	180-181	95 (85)	$\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{6}$	68.08	5.00	9.92	
	EtOH	Red	564.60	68.12	5.21	10.12	
38d	220-221	95 (85)	$\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{6}$	67.88	4.41	10.21	
	EtOH	Red	548.65	67.65	4.32	10.32	

Table 2 Spectral data of some newly synthesised compounds

Compd. no.	Spectral data
6a	IR: 3216 (NH), 1739, 1699 (2 CO), 1665 ($\mathrm{C}=\mathrm{N}$). ${ }^{1} \mathrm{H}$ NMR: $1.30\left(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.21\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.2\left(\mathrm{q}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 6.46-7.02 (m, 5H), 9.32 (s, br., 1H, NH). ${ }^{13} \mathrm{C}$ NMR: 9.3 (CH3), 11.1 (CH3), 13.8 (CH3), 61.1 (CH2), 116.3, 118, 118.8. 129.6, 133.5, 134, 146.3, 154, 155.8, 159.3, 161, 163.
6b	IR: 3246 (NH), 1693 (CO), 1629 (C=N). ${ }^{1} \mathrm{H}$ NMR: 2.20 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 2.21 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 2.41 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 6.46-7.02 (m,5H), 9.32 (s, br., 1H, NH).
6c	IR: 3268, 3246 (2 NH), 1677 (CO), 1624 ($\mathrm{C}=\mathrm{N}$). ${ }^{1} \mathrm{H}$ NMR: 2.21 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 2.41 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 6.46-7.02 (m, 10H), 9.32 (s, br., 1H, NH), 10.23 (s, br., 1H, NH).
6d	IR: 3177 (NH), 1695, 1680 (2 CO), 1602 ($\mathrm{C}=\mathrm{N}$). ${ }^{1} \mathrm{H}$ NMR: 2.21 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 2.41 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 6.46-7.81 (m, 10H), 9.32 (s, br., 1H, NH).
6 e	IR: 3280 (NH), 1675 (CO), 1640 (C=N). ${ }^{1} \mathrm{H}$ NMR: 2.21 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 2.41 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 6.46-7.59 (m, 10H), 9.32 (s , br., 1H, NH).
11	IR: 3290 (NH), 1680, 1651 (2 CO), 1630 (C=N). ${ }^{1} \mathrm{H}$ NMR: $1.83\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.69\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.94\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.226-8.22(\mathrm{~m}, 10 \mathrm{H}$, aromatic protons), 9.32 (s, br., 1H, NH). MS: $m / e=483\left(\mathrm{M}^{+2,} 0.6 \%\right), 481\left(\mathrm{M}^{+}, 34 \%\right), 336(14 \%), 296(12 \%), 190(10 \%), 145$ (100\%), 89 (58\%).
12	IR: 3203 (NH), 1675, 1656 (2 CO). ${ }^{1} \mathrm{H}$ NMR: $7.20-7.91$ (m, 15 H , aromatic protons), 8.30 (s, 1H, pyrazole $\mathrm{H}-3$), 9.51 (s, br., 1H, NH).
17a	IR: 1744 (CO), 1620 ($\mathrm{C}=\mathrm{N}$), 1600 ($\mathrm{C}=\mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR: $1.30\left(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.21\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.2\left(\mathrm{q}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 6.46-7.64 (m, 5H).
17b	IR: 1702, 1651 (2 CO), 1620 (C=N). ${ }^{1} \mathrm{H}$ NMR: 2.20 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 2.21 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 2.41 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 6.46-7.34 (m, 5 H).
17c	IR: 3393 (NH), 1673 (C=N). ${ }^{1} \mathrm{H}$ NMR: 2.21 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 2.41 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 6.46-7.64 (m, 10H), 9.34 (s, br., 1H, NH).
17d	IR: 1696 (CO), 1644 (C=N), 1596 ($\mathrm{C}=\mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR: 2.21 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 2.41 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 6.46-7.81 (m, 10H).
17e	IR: 1744 (CO), 1620 ($\mathrm{C}=\mathrm{N}$), 1600 ($\mathrm{C}=\mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR: 2.21 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 2.41 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 6.46-7.78 (m, 10H).
22	IR: 3298, $3190\left(\mathrm{NH}_{2}\right)$. ${ }^{1} \mathrm{H}$ NMR: 3.25 (dd, $\left.1 \mathrm{H}, J=18.1,5.8 \mathrm{~Hz}, \mathrm{CH}_{(\text {pyraz })}\right), 3.82\left(\left(\mathrm{dd}, 1 \mathrm{H}, J=18.1,12.2 \mathrm{~Hz}, \mathrm{CH}_{2(\text { pyraz) })}\right), 5.54(\mathrm{dd}, 1 \mathrm{H}, J=12.2\right.$, $5.8 \mathrm{~Hz}, \mathrm{CH}_{2}$ (pyraz) $), 6.61$ (s, 2H, NH_{2}), $7.3-8.3$ ($\mathrm{m}, 10 \mathrm{H}$, aromatic protons).
23a	IR: 3026, 2956 (CH), 1650 (C=N) ${ }^{1} \mathrm{H}$ NMR: $2.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.25\left(\mathrm{dd}, 1 \mathrm{H}, J=18.1,5.8 \mathrm{~Hz}, \mathrm{CH}_{(\text {pyraz })}\right), 3.82\left(\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=18.1,12.2 \mathrm{~Hz}, \mathrm{CH}_{2(\text { pyraz) }}\right), 5.54\right.$ (dd, $1 \mathrm{H}, J=12.2,5.8 \mathrm{~Hz}, \mathrm{CH}_{2}$ (pyraz) $), 7.3-8.3$ (m, 15H, aromatic protons).
23b	IR: 3027, 2917 (CH), 1601 (C=N) ${ }^{1} \mathrm{H}$ NMR: 3.25 (dd, $\left.1 \mathrm{H}, J=18.1,5.8 \mathrm{~Hz}, \mathrm{CH}_{(\text {pyraz })}\right), 3.82\left(\left(\mathrm{dd}, 1 \mathrm{H}, J=18.1,12.2 \mathrm{~Hz}, \mathrm{CH}_{2(\text { pyraz) }}\right), 5.54(\mathrm{dd}, 1 \mathrm{H}, J=12.2\right.$, $5.8 \mathrm{~Hz}, \mathrm{CH}_{2}$ (pyraz) $), 7.3-8.3$ (m,20H, aromatic protons). MS: $m / e=527\left(\mathrm{M}^{+2}, 3 \%\right), 526\left(\mathrm{M}^{+1}, 11 \%\right), 525\left(\mathrm{M}^{+1}, 34 \%\right), 420(2 \%), 143(15 \%), 129(22 \%), 115(17 \%), 103(15 \%)$, 77 (100\%).
23c	IR: 3030, 2971, 2930 (CH), 1625 (C=N) ${ }^{1} \mathrm{H}$ NMR: 3.25 (dd, $\left.1 \mathrm{H}, J=18.1,5.8 \mathrm{~Hz}, \mathrm{CH}_{(\text {pyraz) })}\right), 3.82$ ((dd, $\left.1 \mathrm{H}, J=18.1,12.2 \mathrm{~Hz}, \mathrm{CH}_{2 \text { (pyraz) }}\right), 5.54$ ((dd, $1 \mathrm{H}, J=12.2$, $5.8 \mathrm{~Hz}, \mathrm{CH}_{2}$ (pyraz) $), 7.3-8.3$ (m,20H, aromatic protons).
24a	IR: 3060, 2917 (CH), 1600 (C=C). ${ }^{1} \mathrm{H}$ NMR: $2.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.25\left(\mathrm{dd}, 1 \mathrm{H}, J=18.1,5.8 \mathrm{~Hz}, \mathrm{CH}_{(\text {pyraz })}\right), 3.82\left(\left(\mathrm{dd}, 1 \mathrm{H}, J=18.1,12.2 \mathrm{~Hz}, \mathrm{CH}_{2(\text { pyraz })}\right), 5.54\right.$ (dd, $1 \mathrm{H}, J=12.2,5.8 \mathrm{~Hz}, \mathrm{CH}_{2}$ (pyraz) $), 6.15$ (s, 1H, thiazole $\mathrm{H}-5$), $7.3-8.3$ ($\mathrm{m}, 10 \mathrm{H}$, aromatic protons).
24b	IR: 3060, 2917 (CH), 1600 (C=C). ${ }^{1} \mathrm{H}$ NMR: 3.25 (dd, $\left.1 \mathrm{H}, J=18.1,5.8 \mathrm{~Hz}, \mathrm{CH}_{(\text {pyraz) }}\right), 3.82\left(\left(\mathrm{dd}, 1 \mathrm{H}, J=18.1,12.2 \mathrm{~Hz}, \mathrm{CH}_{2 \text { (pyraz) }}\right), 5.54\right.$ ((dd, $1 \mathrm{H}, J=12.2$, $5.8 \mathrm{~Hz}, \mathrm{CH}_{2 \text { (pyraz) })}$, 6.11 (s, 1H, thiazole H-5), 7.3-8.3 (m, 15H, aromatic protons).
26a	IR: 3247 (NH), 3047, 2948 (CH), 1619 (C=N). ${ }^{1} \mathrm{H}$ NMR: 2.47 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 6.11 ($\mathrm{s}, 1 \mathrm{H}$, thiazole $\mathrm{H}-5$), 7.3-7.8 (m, 5 H , aromatic protons), 9.32 ($\mathrm{s}, \mathrm{br}, \mathrm{1H}, \mathrm{NH}$).
26b	IR: 3218 (NH), 3059, 2948 (CH), 1629 (C=N). ${ }^{1} \mathrm{H}$ NMR: $1.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.11(\mathrm{~s}, 1 \mathrm{H})$, thiazole $\left.\mathrm{H}-5\right), 7.4-7.8(\mathrm{~m}, 10 \mathrm{H}$, aromatic protons), 9.35 (s, br., 1H, NH).
27a	IR: 3420 (NH), 3057, 2949 (CH), 1604 (C=N). ${ }^{1} \mathrm{H}$ NMR: 1.13 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 2.47 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $7.4-7.8$ (m, 10H, aromatic protons), 9.32 ($\mathrm{s}, \mathrm{br} ., 1 \mathrm{H}, \mathrm{NH}$).
27b	IR: 3422 (NH), 3058, 2935 (CH), 1605 (C=N). ${ }^{1} \mathrm{H}$ NMR: 1.13 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $7.4-7.8(\mathrm{~m}, 15 \mathrm{H}$, aromatic protons), 9.32 (s, br., $1 \mathrm{H}, \mathrm{NH}$). MS: $m / e=438\left(\mathrm{M}^{+1}, 0.6 \%\right), 437\left(\mathrm{M}^{+}, 0.54 \%\right), 405(0.7 \%), 393(5 \%), 158(3.6 \%), 136(5.8 \%), 135(73 \%), 105(58 \%)$, 90 (9\%), 77 (100%).
27c	IR: 3422 (NH), 3058, 2935 (CH), 1605 (C=N). ${ }^{1} \mathrm{H}$ NMR: 1.13 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $7.4-7.8$ ($\mathrm{m}, 15 \mathrm{H}$, aromatic protons), 9.32 (s, br., $1 \mathrm{H}, \mathrm{NH}$).
31a	IR: 1728 (CO), 1651 (CO) and 1596 ($\mathrm{C}=\mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR: 0.98 (t, $3 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $4.06\left(\mathrm{q}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}^{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 7.25-7.82(\mathrm{~m}, 10 \mathrm{H})$ and $8.29(\mathrm{~s}, 1 \mathrm{H})$.
31b	IR: 3331 (NH), 1681(CO), 1658(CO), 1627 (C=N) and 1596 (C=C). ${ }^{1} \mathrm{H}$ NMR: $7.23-8.12(\mathrm{~m}, 15 \mathrm{H}), 8.25(\mathrm{~s}, 1 \mathrm{H})$ and 9.25 (s, 1H).
31c	IR: 1681(CO), 1658(CO), 1627 (C=N), 1596 (C=C). ${ }^{1} \mathrm{H}$ NMR: 2.64 (s, 3H), 7.25-7.99 (m, 10H), 8.27 ($\mathrm{s}, 1 \mathrm{H}$).
31d	IR: 1651(CO), 1596 (C=C). ${ }^{1} \mathrm{H}$ NMR: 7.23-8.12 (m, 15H), and 8.25 (s, 1H).
31e	IR: 1651(CO), 1596 (C=C). ${ }^{1} \mathrm{H}$ NMR: 7.23-8.12 (m, 15H), and $8.25(\mathrm{~s}, 1 \mathrm{H})$.

Compd no.	Spectral data
33a	IR: 3330 (NH), 2923 (CH), 1674 (CO), 1596(C=C).
	${ }^{1} \mathrm{H}$ NMR: 7.33-7.62 (m, 10H), 8.23 (s, 1H), 11.12 (s, 1H).
	MS: m/e = 329 ($\mathrm{M}+1,18 \%$), 328 ($\mathrm{M}+$, 70\%), 271 (39\%), 113 (11\%), 77 (100\%).
33b	IR: 1681(CO), 1627 ($\mathrm{C}=\mathrm{N}$), 1596 ($\mathrm{C}=\mathrm{C}$).
	${ }^{1} \mathrm{H}$ NMR: 2.64 (s, 3H), 7.25-7.99 (m, 10H), 8.27 (s, 1H).
	$\begin{aligned} & \text { MS: } \mathrm{m} / \mathrm{e}=328(\mathrm{M}+2,2.8 \%), 327(\mathrm{M}+1,22 \%), 326(\mathrm{M}+, 90.52 \%), 284(3 \%), 256(3 \%), 189(3 \%), 182(6 \%), 139(6 \%) \text {, } \\ & 104(15 \%), 89(15 \%), 77(100 \%) . \end{aligned}$
33c	IR: $1645(\mathrm{C}=\mathrm{N})$ and $1596(\mathrm{C}=\mathrm{C})$.
	${ }^{1} \mathrm{H}$ NMR: 7.23-8.12 (m, 15H), 8.25 (s, 1H).
33d	IR: $1645(\mathrm{C}=\mathrm{N})$ and $1596(\mathrm{C}=\mathrm{C})$.
	${ }^{1} \mathrm{H}$ NMR: 7.23-8.12 (m, 15H), 8.35 (s, 1H).
38a	IR: 3066, 2962 (CH),1739 (CO), 1627 (C=N), 1600 (C=C).
	${ }^{1} \mathrm{H}$ NMR: $1.24\left(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.50(\mathrm{~s}, 3 \mathrm{H}), 4.09\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}^{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.62(\mathrm{~s}, 1 \mathrm{H}), 7.05-8.47(\mathrm{~m}$, 15 H , aromatic protones).
38b	IR: 3050, 2973 (CH), 1739 (CO), 1655 (C=N), 1607 (C=C).
	${ }^{1} \mathrm{H}$ NMR: 1.08 (d, 6 H), 1.21 (t, $3 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), 2.58 (s, 3 H), 2.71 (sept., 1 H), 4.06 (q, $2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), 5.62 (s, 1H), 7.03-8.51 (m, 14H).
38c	IR: 3064, 2992 (CH), 1708 (CO), 1655 (C=N), 1610 (C=C).
	${ }^{1} \mathrm{H}$ NMR: $1.29\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.77(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 6 \mathrm{H}), 4.11\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.43(\mathrm{~s}, 1 \mathrm{H})$, 6 59-8.45 (m 13H)
	6.59-8.45 (m, 13H).
38d	
	${ }^{1} \mathrm{H}$ NMR: $1.29\left(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.57(\mathrm{~s}, 3 \mathrm{H}), 4.11\left(\mathrm{q}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.61(\mathrm{~s}, 1 \mathrm{H}), 5.82(\mathrm{~s}, 2 \mathrm{H})$, 6.59-8.45 (m, 13H).

Method B: An equimolar amount of the appropriate 2b, 13b or 39a-d (5 mmoles), the appropriate hydrazonoyl halides 1a-e (5 mmoles) and sodium methoxide $(0.27 \mathrm{~g}, 5 \mathrm{mmol})$ in ethanol $(20 \mathrm{ml})$ were heated under reflux for 4 h . The resulting solid was collected and recrystallised from the proper solvent to give 6a-e, 17a-e and 38a-d, respectively (Tables 1 and 2).

Synthesis of 3-(1-benzofuran-2-ylcarbonyl)-5-phenyl-4,5-dihydro-1H-pyrazol-1-carbothioamide (22)
A mixture of 1(1-benzofuran-2-yl)-3-phenylpropenone (20) (2.48 g, 10 mmoles) and thiosemicarbazide (21) ($1 \mathrm{~g}, 10 \mathrm{mmoles})$ in acetic acid $(25 \mathrm{ml})$ was heated under reflux for 6 h . The resulting solid that obtained after cooling was collected and recrystallised from acetic acid to give 22 (Tables 1 and 2).

Synthesis of 1-\{[2-(1-benzofuran-2-yl)-5-phenyl-4,5-dihydro-1H-pyrazol-1-yl]-4-substituted 1,3-thiazol-5-yl\}-2-phenyldiazene 23a-c Method A: A mixture of $22(1.60 \mathrm{~g}, 5 \mathrm{mmoles})$, the appropriate hydrazonoyl halides $\mathbf{6 b}, \mathbf{6 d}, \mathbf{6 e}(5 \mathrm{mmoles})$ and triethylamine (0.5 g , $0.75 \mathrm{ml}, 5 \mathrm{mmoles}$) in ethanol (20 ml) was heated under relux for 4 h . The resulting solid was collected and recrystallised from ethanol to give 23a-c, respectively (Tables 1 and 2).

Method B: Benzene diazonium chloride was added to a cold solution of the appropriate $\mathbf{2 4 a}$ or $\mathbf{2 4 b}$ (5 mmoles) in pyridine (20 ml) while stirring. The crude solid was collected and recrystallised from ethanol to give 23a and 23b, respectively.

Method C: Sodium hydroxide solution ($100 \mathrm{ml}, 10 \%$) was added dropwise to equimolar amounts of the appropriate 27 a or $\mathbf{2 7 b}$ and benzaldehyde in ethanol (20 ml) while stirring at room temperature. The reaction mixture was stirred for 4 h and the resulting solid was collected and recrystallised from ethanol to give 23a and 23b, respectively.

Synthesis of 2-[3-(1-benzofuran-2-yl)-5-phenyl-4,5-dihydro-1H-pyrazol-1-yl]-4-substituted 1,3-thiazole 24a and 24b
A mixture of $22(1.60 \mathrm{~g}, 5 \mathrm{mmoles})$, the appropriate chloroacetone or ω-bromoacetophenone (5 mmoles) and triethylamine (0.5 g , $0.75 \mathrm{ml}, 5 \mathrm{mmoles})$ in ethanol (20 ml) was heated under relux for 2 h . The resulting solid, which formed by dilution, was collected and recrystallised from ethanol to give 24a and $\mathbf{2 4 b}$, respectively (Tables 1 and 2).

Synthesis of N-[1-benzofuran-2-ylethylidene]-N'-(4-substituted 1,3-thiazol-2-yl)hydrazine 26a and 26b
Equimolar amounts of 2-acetylbezofuranthisemicarbazone (25) and the appropriate chloroacetone or ω-bromoacetophenone (5 mmoles) in ethanol $(20 \mathrm{ml})$ was boiled under refux for 2 h . The resulting solid was collected and recrystallised from ethanol to give 26a and 26b, respectively (Tables 1 and 2).

Synthesis of N-[1-benzofuran-2-ylethylidene]-N'-(4-substituted 5-phenylazo-1,3-thiazol-2-yl)hydrazines 27a-c
Method A: An equimolar amounts of $\mathbf{2 5}$ and the appropriate hydrazonoyl halides 1b, 1d, 1e and triethylamine (5 mmoles) in ethanol (20 ml) were heated under reflux for 4 h . The resulting solid was collected and recrystallised from ethanol to give 27a-c, respectively (Tables 1 and 2).

Method B: Benzene diazonium chloride was added to a cold solution of the appropriate $\mathbf{2 6 a}$ or $\mathbf{2 6 b}(5 \mathrm{mmoles})$ in pyridine $(20 \mathrm{ml})$ while stirring. The crude solid was collected and recrystallised from ethanol to give 27a and 27b, respectively (Tables 1 and 2).

Synthesis of 1-phenyl-4-(1-benzofuran-2-ylcarbonyl)-3-substituted pyrazoles 31a-e
An equimolar amounts of the appropriate hydrazonoyl halides 1a-e, 1-(benzofuran-2-yl)-3-(dimethylamino)prop-2-en-1-one (28) and triethylamine (5 mmoles) in toluene $(20 \mathrm{ml})$ were heated under reflux for 2 h . The solvent was evaporated under reduce pressure and triturated with petroleum ether $40-60^{\circ} \mathrm{C}$ then the resulting solid was collected and recrystallised from ethanol to give the pyrazoles 31a-e, respectively (Tables 1 and 2).

Synthesis of 7-(1-benzofuran-2-yl)-2-phenyyl-2H-4-substituted pyrazolo[3,4-d]pyridazines 33a-d
An equimolar amounts of the appropriate pyrazoles 31a-e and hydrazine hydrate (5 mmoles) in ethanol (20 ml) was boiled under refluxed for 2 h . The resulting solid was collected and recrystallised from the proper solvent to give the pyrazolo[3,4- d] pyridazines $\mathbf{3 3 a} \mathbf{- c}$, respectively (Tables 1 and 2).

Received 21 August 2007; accepted 30 October 2007
Paper 07/4804 doi: 10.3184/030823407X256118

References

1 Part 59: A.O. Abdelhamid, M.A. Sayed and Y.H. Zaki. Phosphorus, Sulfur, Silicon Relat. Elem., 2007, in press.
2 A.O. Abdelhamid, M.M.M. Sallam and S.A. Amer, Heteroatom Chem., 2001, 12, 468.
3 A.O. Abdelhamid, H.F. Zohdi and N.A. Ali, Molecules, 2001, 5, 961.
4 A.O. Abdelhamid, M.M. Abdelhalim and G.A. Elmegeed, J. Heterocycl. Chem., 2007, 44, 7.
5 H.F. Zohdi, N.M. Rateb, M.M.M. Sallam and A.O. Abdelhamid, J. Chem. Res., 1998, (S) 742; (M) 3329.
6 A.O. Abdelhamid, S.M. Abdelgawad and S.F. El-Shrarnoby, Phosphorus, Sulfur, Silicon Relat. Elem., 2002, 177, 2699.
7 A.O. Abdelhamid and A.R. Sayed. Phosphorus, Sulfur, Silicon Relat. Elem., 2007, 182, 1447.
8 P.A. Lowe, in Heterocyclic Chemistry, H. Suschitzky and O. Methcohn; (eds) Chemical Society, London, 1980, vol. 1, pp. 119-139.
9 J.V. Metzger, Comprehensive Heterocyclic Chemistry, A.R. Katritzky and C.W. Rees (eds), Pergamon Press, Oxford, 1984, vol. 6, pp. 328.

10 H.D. Brown, US Pat. 3278 547, 1966; Chem. Abstr., 1966, 65, 18593.

11 S.P. Singh and S. Segal, Indian J. Chem., 1988, 27B, 941.
12 Y. Usui, Yakugaku Zasshi, 1969, 89, 99; Chem. Abstr., 1969, 71, 69601.
13 P. Goursot and E.F. Jr. Westrum, J. Chem. Eng. Data, 1969, 14, 1.
14 M.J. DiGrandi, K.J. Curran, E.Z. Baum, G. Ebernitz, G.A. Ellestad, W. Ding, S.A. Lang, M. Rossi and J.D. Bloom. Bioorg. Med. Chem. Lett., 2003, 13, 2483
15 E.Z. Baum, W.D. Ding, M.M. Siegel, J. Halmess, G.A. Bebernitz, L. Sridharan, Ki Tabei, G. Krishnamurity, T. Garopfiglio, J.T. Grores, J.D. Blomm, M. Digrandi, M. Bradley, G. Ellestead, A.P. Seddon and I. Gluzman. Biochemistry, 1996, 35, 5847.

16 V.J. Ram and D.N. Upadhyay, Indian J. Chem., 1999, 38B, 173.
17 V.J. Ram and U.K. Singha, Eur. J. Med. Chem., 1990, 25, 533.
18 H. Nakamura, Y.H. Hosoi and J. Fukawa, JPn Kokai Pat 03, 10, 245 (1991); Chem. Abstr., 1991, 115, 266657 f.

19 G. Barthelemey, A. Hallot and J.N. Vallat, Fr Pat 2, 549, 834 (1985); Chem. Abstr., 1985, 103, 71335u.
20 N. Tsuda, T. Mishina, M. Obata, K. Araki, A. Inui and T. Nakamura, JPn Kokai Pat 61, 227, 584 (1986); Chem. Abstr., 1987, 106, 176416 m.
21 E.B. Mawad, M.Y. Yousif and M.A. Metwaly, Pharmazie. 1989, 44, 820.
22 Z.H. Khalil, A.A. Abdel Hafez and A.A. Abdo, Phosphorus, Sulfur, Silicon Relat. Elem., 1989, 45, 81.

3 F. Sauter and W. Deinhammer. Monatsh. Chem., 1973, 104, 1593.
24 M. Modica, M. Santagati, F. Russo, L. Parotti, L. De Gioia, C. Selvaggini, M. Salmona and T. Mennini, J. Med. Chem., 1977, 40, 574.

25 A.M.K. Eldean and A.A. Geies, J. Chem, Res., 1977, (S), 352; (M) 2264.
26 B.V. Harinadha, M.S.K. Sneha, K.K. Srinivasan and B.G. Varadaraj, Indian J. Chem., 2004, 13, 253.
27 R. Paul, W.A. Hallett, J.W. Hanifin, M.F. Reich, B.DE. Johnson, R.H. Lenhard, J.P. Dusza, S.S. Kerwar, Y-I Lin, W.C, Pickett, C.M. Seifert, L.W. Torlery, M.E. Tarrant and S. Wrenn. J. Med. Chem., 1993, 36, 2716.
28 S.M. Sherif, M.M. Youssef, K.M. Mobarak and A.M. Abdel-Fattah, Tetrahedron, 1993, 49, 9561.
29 A.O. Abdelhamid and M.A.M. Alkhodshi, Phosphorus, Sulfur, Silicon Relat. Elemn., 2005, 180, 149.
30 G. Fravel, Bull. Soc. Chim. Fr., 1904, 31, 150.
1 N.E. Eweiss and A. Osman, Tetrahedron Lett., 1979,1169.
2 A.S. Shawali and A.O. Abdelhamid, Bull. Chem. Soc. Jpn., 1976, 49, 321.
3 A.S. Shawali and A. Osman, Tetrahedron. 1971, 27, 2517.
34 A.O. Abdelhamid, F.A. Attaby and M.Y Zaki, Phosphorus, Sulfur, Silicon Relat. Elem., 1990, 53, 403.

[^0]: * Correspondent. E-mail: abdelhamid45@gmail.com

